Question	Answer	Mark
Number		
1(a)	(i) Explain how verti distance travelled between 0.5 and 1.0 s can be found	
	Area under graph between 0.5 and 1.0 s / X and Y / these points /	
	Use average velocity between these points x time (1)	
	[Accept correct working with or without units, i.e. 0.5 x 4.8 x 0.5, and accept 4.4 instead of 4.8]	(2)
	(ii) Explain how acce tion at Y can be found	
	Gradient of line at Y / of XY / of XZ / of YZ / at 1.0 s (1) [Accept correct working with or without units, i.e. (-)4.8/0.5 or 9.6/1 and accept 4.4 instead of 4.8 or 8.8 instead of 9.6] [If condidates give (i) 'crea under graph' or 'cuerage valuatity' and (ii)	
	[If candidates give (i) 'area under graph' or 'average velocity' and (ii) 'gradient of graph' without specifying where on graph, allow one mark in total]	
1(b)	Explain errors (QWC – Work must be clear and organised in a logical manner using	
	technical wording where appropriate to be eligible for the 4 th Physics mark)	
	Max 2 per error for max 2 errors	
	Lines not parallel (1) Acceleration should be the same/both should have same gradient (1)	
	Max +ve and -ve speeds (from 0.5 s) all the same (1) There will be some energy losses (bounce, air resistance) so max should have smaller magnitude each time (1)	
	Velocity at X/Z greater than that at the start (1) Ball cannot gain energy (1)	
	Starts with a positive velocity (1) but initial movement is down (1)	
	Starts with non-zero velocity / graph starts in wrong place (1) From photo, it is dropped from rest (1)	(max 4)
	There is a vertical line (1) Bounce must take some time / acceleration can't be infinite etc	
	The graph shows a change in direction of velocity between 0 and 0.5 s / release and striking the ground (1) It is travelling in one direction / down this whole time (1)	
	Graph shows an initial deceleration (1) It is actually accelerating downwards (1)	

[Allow independent mark for second point in a pair if the context is not ambiguous, e.g. can't just say 'it is travelling downwards' without saying when]	
Total for question	6

Question Number	Answer		Mark
2(a)	Use of $F = kx$	(1)	
	$k = 32 (\text{N m}^{-1})$	(1)	2
	Example of calculation		
	$k = \frac{3.9 \mathrm{N}}{0.122 \mathrm{m}} = 32.0 \mathrm{N} \mathrm{m}^{-1}$		
2(b)(i)	Use of $F = kx \mathbf{OR} F = ma$	(1)	
	F = 4.1 (N) (ecf)	(1)	2
	Example of calculation		
	$\overline{F} = 31.97 \text{ N m}^{-1} \times 0.127 \text{ m}$		
	F = 4.06 N		
	OR		
	$F = 0.4 \text{ kg x} (9.81 \text{ m s}^{-2} + 0.4 \text{ m s}^{-2})$ F = 4.08 N		
2(b)(ii)	Max 2		
	Can be answered using a description:		
	Resultant force = force of spring on mass - weight	(1)	
	Substitution of resultant force into $F = ma$	(1)	
	OR		
	Could be answered using a calculation e.g.		
	F = 4.06 N - 3.9 N	(1)	
	$a = \underbrace{0.16 \text{ N}}_{0.4 \text{ m s}^{-2}} \text{OR}$ clear substitution of any force into this equation.	(1)	2
2(b)(iii)	Use of $v = u + at$	(1)	
- (<i>w</i>)(····)	$v = 0.8 \text{ m s}^{-1}$ (allow ecf)	(1)	2
	Example of calculation		
	$v = 0 + (0.4 \text{ x } 2) = 0.8 \text{ m s}^{-1}$		
2(b)(iv)	Graph correct shape i.e. 1 region of acceleration, 1 region of deceleration	(1)	
2 (L)()	Constant velocity between	(1)	2
2(b)(v)	Use of area under graph to find distance OR use of appropriate equations of motion	(1)	
	or use of appropriate equations of motion	(1)	
	Distance = 4.0 m (correct answer only)	(1)	2
	Example of calculation		
	Area = $(\frac{1}{2} \times 2 \text{ s} \times 0.8 \text{ m s}^{-1}) + (3 \text{ s} \times 0.8 \text{ m s}^{-1}) + (\frac{1}{2} \times 2 \text{ s} \times 0.8 \text{ m s}^{-1})$		
3 (L)(- 1)	Area = 4.0 m	/4 \	
2(b)(vi)	Spring extended beyond static extension OR extension increased at start	(1)	n
	(So) resultant force upwards Total for question	(1)	2 14

Question Number	Answer	Mark
3 (a)	Use Newton's laws 1 and 3 to explain motion Uses N3 - force (backward) on air by balloon/car, (so/=) force (forward) on balloon/car by air Uses N1 - resultant force / forces unbalanced / force on balloon > drag, (so) there is an acceleration / moves from rest / <u>starts</u> moving Identifies the <u>use</u> of N1 or N3 (by name or description)	(1) (1)
	correctly, linking it to the context	(1)
3 (b) (i)	Show that maximum speed is between 100 and 150 cm s ⁻¹ Draw tangent on graph / state use gradient / show use of gradient Identify max speed between 1.2 and 1.4 s (from position of gradient or values used) Correct answer (120 (cm s ⁻¹))	(1) (1) (1)
	Example of calculation v = 120 cm - 0 cm / 1.9 s - 0.9 s $= 120 \text{ cm} \text{ s}^{-1}$ (allow answers which are in range 100 and 150 cm s ⁻¹ when rounded to 2 sf)	
3 (b) (ii)	Sketch graph	
	Shows: Speed increasing from 0 and then decreases Max speed at correct time (accept between 1.0 and 1.5 s) OR correct magnitude (must be indicated) Speed decreasing to 0 at between 3.4 and 4.0 s	(1) (1) (1)
	Total for question	9

Question Number	Answer		Mark
4(a)	Δ.ν.		
i(u)	$a = \frac{\Delta v}{(\Delta)t}$		
	(Use of) acceleration = gradient Or $(\Delta)t$ stated		
	v-u	(1)	
	Or use of $a = \frac{u-u}{t}$ with $u > 1$	(1)	
		(1)	
	Answers in range 2.0 to 2.8 ($m s^{-2}$)	(1)	3
	Answers in range 2.1 to 2.5 m s ⁻²	(1)	3
4 (b)	<u>Max 4</u>		
	changing gradient Or graph curves	(1)	
	The idea of a changing acceleration	(1)	
	Decreasing acceleration	(1)	
	Resultant force decreasing	(1)	
	Drag increases (with speed)	(1)	4
	[Ignore references to initial constant acceleration/straight line initially/(0-3) s]		
4 (c)	Zero (no u.e.) Or there is no resultant force	(1)	1
4(d)	Attempt to find total distance travelled	(1)	
	Distance in range 900 (m) to 1100 (m)	(1)	
	Use of speed = distance / time	(1)	
	Speed = 20.0 to 21.0 (m s ⁻¹)		
	Or comparison of their distance with 1100m	(1)	
	[A number of incorrect methods give the value of $20 - 21$ m s ⁻¹ . Only give final		
	mark if correct method used using total distance and time of 50 s.]		
	OR		
	Use of line at 22 m s ^{-1}	(1)	
	Use of area under graph	(1)	
	Simple comparison of area between graph and line above and below the line	(1)	
	(e.g. more below than above)	• •	4
	Quantitative comparison (e.g. 60 (m) above and 140 (m) below)	(1)	
	Total for question		12